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Abstract

Advances in Computational Aeroacoustics (CAA)

depend critically on the availability of accurate,

nondispersive, least dissipative computation algo-

rithm as well as high quality numerical boundary
treatments. This paper focuses on the recent de-

velopments of numerical boundary conditions. In

a typical CAA problem, one often encounters two

types of boundaries. Because a finite computation
domain is used, there are external boundaries. On
the external boundaries, boundary conditions simu-

lating the solution outside the computation domain
are to be imposed. Inside the computation domain,

there may be internal boundaries. On these inter-

hal boundaries, boundary conditions simulating the

presence of an object or surface with specific acoustic

characteristics are to be applied. Numerical bound-

ary conditions, both external or internal, developed

for simple model problems are reviewed and exam-

ined. Numerical boundary conditions for real aeroa-

coustic problems are also discussed through specific

examples. The paper concludes with a description of
some much needed research in numerical boundary
conditions for CAA.

1. Introduction

A physical problem is defined mathematically

by the governing equations and boundary condi-

tions. When the governing equations are dis-

cretized to be solved computationally, the result-

ing finite difference equations are usually of higher

order than the original partial differential equa-
tions. This is because high order schemes are

needed to minimize numerical dispersion, an im-

portant requirement of Computational Aeroacous-

tics (CAA). The use of high order schemes will
be assumed throughout this paper. High order fi-

nite difference equations support extraneous solu-

tions that are not solutions of the partial differ-

ential equations. Thus to ensure a quality solu-

tion, a set of numerical boundary conditions must

t Copyright @1997 by C.K.W. Tam. Published by the Amer-

ican Institute of Aeronautics and Astronautics, Inc. with

permission.

* Distinguished Research Professor, Department of Mathemat-

ics. Associate Fellow AIAA.

be specified such that not only the physical bound-

ary conditions are faithfully reproduced but also the

amplitude of the extraneous solutions, if generated,
would be minimized.

A computation domain is inevitably finite in size.

The result is that part of the physical domain is lost

in the numerical simulation. It is, therefore, impor-

tant that whatever takes place in the lost domain

should have very little influence on the solution in-

side the computation domain. If this is not the case,
the effects must be simulated by the boundary condi-

tions imposed on the boundaries of the computation

domain. For exterior aeroacoustics problems, a set

of nonreflecting or outflow boundary conditions are
needed at the external boundaries. The purpose of

the nonreflecting or outflow boundary conditions is
to allow the radiated sound waves and the convected

vorticity and entropy waves to leave the computation

domain smoothly without reflection.

The main objective of this paper is to provide an
assessment of the recent advances in the formulation

of numerical boundary conditions for aeroacoustics

problems. In CAA, numerical boundary conditions

are often developed for idealized model problems. In

practical applications, they must be modified or ex-
tended to account for the presence of a nonuniform

and sometimes unknown mean flow. In many cases,

the outgoing wave amplitude is not necessarily small.

So linear boundary conditions would need to be ad-

justed to allow the exit of nonlinear waves. Issues of
this kind will also be examinined and discussed in

this paper.

Broadly speaking, CAA boundary conditions can

be classified into six categories. They are:

1. Radiation boundary conditions.

2. Outflow boundary conditions.

3. Wall boundary conditions.

4. Impedance boundary conditions.

5. Radiation/outflow boundary conditions with in-
coming acoustics or vorticity waves.

6. Radiation boundary conditions for ducted envi-
ronments.

The first three categories of boundary conditions are

also needed in standard Computational Fluid Dy-

namics (CFD). However, owing to the presence of
acoustic and vorticity waves, the actual boundary

conditions used in CAA are very different from those



usedin traditional CFD. The last three categories

of boundary conditions appear to be unique to CAA

problems.

The need for the above types of boundary condi-

tions is best illustrated by considering the two com-

putational aeroacoustics problems shown in figures

1 and 2. Figure 1 shows the computatidn domain for

numerical simulation of jet noise generation. The jet
flow leaves the computation domain along boundary

AB. Here the imposition of a set of outflow bound-

ary conditions to allow the jet flow, sound, vortic-

ity and entropy waves to exit smoothly would be

most appropriate. Along boundary BCDE, radia-

tion boundary conditions are required. Along the
nozzle wall, wall boundary conditions are necessary.

Figure 2 shows the computation domain for numeri-
cal simulation of fan noise radiation from a jet engine

inlet. An important component of fan noise is gen-

erated by the interaction of the ingested vorticity
waves and the rotor inside the engine. To suppress

fan noise, a standard practice is to install sound ab-

sorbing liners on the inner surface of the engine inlet

as shown in figure 2. These liners are represented

mathematically by an impedance boundary condi-

tion. Along the exterior boundary CDEF, radiation
boundary conditions with incoming vorticity waves
are needed for the numerical simulation. Along in-

ternal boundary AB, radiation boundary conditions

for ducted environment are required to simulate the

internal propagation of acoustic duct modes inside

the jet engine.

The rest of this paper is as follows. In Section
2, numerical boundary conditions developed using
idealized flow models will be examined and com-

pared. In Section 3, boundary conditions developed
for more realistic aeroacoustics problems are pre-

sented. These two sections form the main part of

this paper. Section 4 concludes with a discussion of

the challenges and future directions of development

in numerical boundary conditions for CAA.

2. Boundary Conditions Based on Idealized
Model Problems

Most numerical boundary conditions available in

the literature were developed for idealized model

problems. Idealization, in some cases, are necessary
to make it possible for a rigorous derivation of the

boundary conditions. From the point of view that

boundary conditions are local relations, the use of

local approximations to formulate first-order bound-

ary conditions is quite justified. The development of

numerical boundary conditions for the acoustic wave

equation has continued for many years. A recent re-

view was given by Givoli 1. For numerical boundary
conditions relevant to CAA for which the Euler or

Navier-Stokes equations are used, brief reviews can

be found in the articles by Tam 2 and Lele 3.

2.1 Radiatlon/Inflow and Outflow Boundary
Conditions

It is well known that in a uniform mean flow the

linearized Euler equations support three types of dis-

turbances. They are the acoustic waves, the vor-

ticity waves and the entropy waves. The acoustic

waves propagate at sound speed relative to the mean
flow. The vorticity as well as the entropy waves are

frozen patterns convected downstream by the mean

flow. Because of the presence of the three types of

wave disturbances, each having distinct propagation

characteristics, the outgoing disturbances present at

the inflow and outflow boundaries are very differ-

ent. At an inflow boundary, the only outgoing dis-
turbances are acoustic waves. At an outflow bound-

ary, in addition to the acoustic waves, both vorticity
and entropy waves are convected out by the mean

flow. Due to this distinctive difference, some au-

thors choose to separate radiation/inflow boundary

conditions and outflow boundary conditions as two

different types of boundary conditions. Here we will

do so whenever clarity demands.

There have been many proposed radiation/inflow

and outflow boundary conditions based on totally

different considerations. For convenience, we will

group them into five types as follows.

(a) Characteristics Based Boundary Condl-
tions

Thompson 4,5 and Poinsat & Lele s proposed to

treat the problem as one-dimensional near the

boundary of the computation domain. The coor-
dinate in the direction normal to the boundary is

taken as the spatial coordinate. For Euler equations

in one dimension, a full set of characteristics can

be easily found. Thompson, Poinsat & Lele used

these characteristics to form boundary conditions in-

volving only outgoing waves. However, in two- or
three-dimensional problems, there are no true char-
acteristics. The characteristics boundary conditions
work well for acoustic disturbances incident nearly

normally on the boundary. They do not give good

results at grazing angle of incidence or when there

is a strong mean flow tangential to the boundary.

(b) Boundary Conditions Derived from

Asymptotic Solutions

Bayliss & Turkel 7's, Hagstrom & Hariharan 9



and Tam & Webb 1° derived radiation and outflow

boundary conditions by means of the asymptotic

solutions of the governing equations. In the case
of small amplitude disturbances superimposed on a

uniform mean flow of density p0, pressure P0 and

velocity u0 in the x-direction, the linearized Euler

equations in two dimensions are,
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The nonhomogeneous term H on the right side of (1)

represents distributed unsteady sources. By using

Fourier-Laplace transforms, Tam 8_ Webb l° showed

that the initial value problem of (1) has asymptotic

solutions consisting of acoustic, vorticity and en-

tropy waves. These asymptotic solutions have the
form

(i) Acoustic waves

N-t,o) "o)~ ,v(O)
ti

where (r, 0) are the polar coordinates. V(0) =

u0cosS+a0(1- MUsing0)½, M = U_aao,a0 = (p:_o)]
is the speed of sound.

(ii) Vortlcity waves
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[:] r°-'l= (3)
L Oy J

where

= [ $(z - u0t, y), z -_ +oo
L O, x --!, --oo

(ill) Entropy waves
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In (2) to (4), the functions F, • and X depend on
the initial condition and the unsteady source distri-

bution.

At boundaries where there are only outgoing
acoustic waves, a set of radiation boundary condi-

tions can be derived by eliminating the unknown

function F from (2) by first taking the t (time) and

r derivatives. The resulting radiation boundary con-

ditions are,

+ =o+o (5)
P

At the outflow region, the outgoing disturbances
consist of a combination of acoustic, vorticity and

entropy waves, that is, a direct sum of (2), (3) and

(4). It turns out, it is possible to eliminate the un-
known functions F, @ and X, and upon using the

linearized momentum equations of (1), to obtain the

following set of outflow boundary conditions.
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Extensive numerical experiments testing the accu-

racy of (5) and (6) have been carried out. The results
indicate that radiation boundary conditions (5) and

outflow boundary conditions (6) are extremely ef-

fective, provided the sources are sufficiently far from
the boundary of the computation domain. When
there are sources located close to the boundary, the

quality of the numerical solution is somewhat de-

graded.

(c) Absorbing Boundary Conditions

A different idea to deal with exterior boundary

conditions is to use an absorbing layer. An ab-

sorbing layer usually consists of 10 to 20 mesh

points in which damping terms are introduced to

damp out the incident waves. The development

of absorbing boundary conditions has been pur-
sued by many investigators including Engquist &

Majda 11, Higdon 12,13, Kosloff & Kosloff 14 and Jiang

& Wong is.
In a more recent work, the idea of absorbing the in-

cident wave was extended and refined by Colonius et



al. into a sponge and exit zone with grid stretching

and filtering. Their work is directly related to the

earlier work by Rai & Moin 17. Similar proposal but

without grid stretching was advanced before by Is-

raeli and Orszag is. A somewhat different approach
was suggested by Ta'asan & Nark 19. They artifi-

cially modified the governing equations in a buffer
zone so that the mean flow becomes supersonic in the

outward direction. This idea was further extended

by Hayden and Turkel 2° to the full Euler equations
in conservation form. Most recently Freund _l pro-

posed a zonal approach combining the absorbing

boundary idea and the technique of Ta'asan & Nark.

(d) Perfectly Matched Layer

In an absorbing layer, the addition of artificial

damping terms to the governing equations for the

purpose of damping out the incidence disturbances
also can lead to substantial reflections at the inter-

face. Berenger 22,_3, in his work on computational

electromagnetics, found that it is possible to formu-

late an absorbing layer without reflection. Such a
layer has come to be known as a perfectly matched

layer (PML). It has found applications in computa-
tional aeroacoustics, elastic wave propagation 24 and

other areas. Hu 25 was the first to apply PML to

acoustics problems governed by the linearized Eu-

ler equations with uniform mean flow. He has since
extended his work to nonuniform flow and for the

fully nonlinear Euler equations 26. Further applica-
tions of PML can be found in the recent works of

Hu and coworkers 27'2s. One great advantage of the
PML method is that if the mean flow is uniform the

boundary of the computation domain can be put

very close to the acoustic sources. This sometimes
allows the use of a small computation domain.

Although PML has been demonstrated to perform
exceedingly well computationally yet the PML equa-
tions with a mean flow are unstable. Consider the

computation of small amplitude disturbances super-

imposed on a uniform mean flow in a computation

domain as shown in figure 3. Let's use Ax = Ay

(the mesh size) as the length scale, ao (the sound

speed) as the velocity scale, a---_ as the time scale,
do

poa2o (where P0 is the mean density) as the pres-
sure scale. The dimensionless governing equations

in the PML are formed by splitting the linearized

Euler equations according to the spatial derivatives.

An absorption term is added to each of the equations

with spatial derivative in the direction normal to the

layer. For example, for the PML on the right bound-
ary of figure 3, region (1), the governing equations

are 25,

au.___!_
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ou28--7-+ (u: + u2) = 0

0vl o0---t- + _vx + M_ (Vl + v2) = 0
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where M_ and My are the mean flow Mach num-

bers in the z and y directions, a is the absorption
coefficients.

Suppose we look for solutions with (x, y, t) depen-
dence in the form exp[i(az + fly - wt)]. It is easy

to find from (7) that the dispersion relations of the

PML region are,

1 w +icr to (w + i_r) 2 w_ - 0 (8)

1 aM_: flM_ _ 0 (9)
w+ia w

In the limit a --+ 0, (8) and (9) become the dispersion
relations of the acoustic and the vorticity waves of

the linearized Euler equations. (8) is a quadric equa-
tion in w. It has two extra roots in addition to the

two modified acoustic modes. For small a, the two

spurious roots are damped but one of the modified

acoustic roots is unstable. For larger a, numerical
solutions indicate that one of the spurious roots be-

comes unstable. In any case, the equation splitting

procedure and the addition of an absorption term,
both are vital to the suppression of reflections at the

interface between the computation domain and the

PML, inadvertently lead to instabilities.
For small a, the roots of (8) and (9) can be found

by perturbation. Let,

w(') = w(_) + aw_ ") + a_w_ ") +... (10)

w(v) = w_')+ aw_ _) + a2w_ _) + ... (11)

where the roots of (8) and (9) are designated by
a superscript 'a' (for acoustic waves) and 'v' (for



vorticitywaves).Substitution of (10) and (11) into

(8) and (9), it is straightforward to find,

w_a)=w+, w_, 0, 0 (12)

where

w+ = CaM, + flMu) 4- (a s +/32) ½

" -w_ + (aM= + �3My)w±

+(1 - M2)/32 - a/3M=M u

w+(w+ - aM= - �3My)
(13)
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Clearly if w_a) or w_v) has positive imaginary part,

the mode is unstable. (13) has a simple interpreta-

tion in the case M u = 0. In this special case, (13)
reduces to

] 'w_a) = i )32+aw±M=_a2M_ "
(16)

For acoustic waves with negative phase velocity; i.e.,

aw± < 0 (the group velocity can, however, be posi-

tive) the numerator of (16) is positive, there will be

values of/32 for which w_") is purely positive imagi-

nary. Similarly, from (15), for _ < 0 and 181 > MM-_,

w__) is also purely positive imaginary. Thus the

PML equations in the presence of a uniform flow

with M= ¢ 0 support unstable solutions.
In a finite difference computation the dimension-

less wavenumbers a and/3 are restricted to the range

of -rr to rr. Following the work of Hu 25, we will as-

sume a PML of width equal to 10 mesh spacings.

For a mean flow of M= = 0.3, a value of er = 1.5

would be quite sufficient to reduce the intensity of
the incident acoustic waves by a factor of 105. Fig-

ure 4 shows a contour map of the growth rate of the

most unstable wave (Im(w) is largest) in the a -/3
plane for such a mean flow. The maximum growth
rate is 0.035. In carrying out numerical simulation

over a long period of time, even a weak instability
could be a source of trouble. It is, therefore, desir-

able to suppress the instability. One way to suppress
the instability and, at the same time, retain per-

fectly matched condition at the edge of the compu-
tation domain is to add artificial selective damping

terms 29 to the discretized form of (7). The design of

the artificial selective damping stencil is such that

there is almost no damping on the long (physical)
waves. Thus the inclusion of these terms in the fi-

nite difference scheme should not alter the perfectly
matched condition for the physical waves. With arti-

ficial damping included, the discretized form of the

first equation of (7) according to the 7-point sten-
cil Dispersion-Relation-Preserving (DRP) scheme 1°

is (Note: all the other equations are to be treated in
a similar way),

3
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where Ra is the artificial mesh Reynolds numbers.

By applying Fourier transform analysis to (17) and

(18) following Ref. [29], the damping rate intro-
duced by the last term of (17) is

3

1 "" e -ijO) (19)
D(a,/3) = -_a Z dj (e-''a +

j=-3

Figure 5 shows the contours of constant damping

rate for RA = 1.0. The coefficient dj's are those

corresponding to a = 0.3rr given in the appendix of

Ref. [2]. Figure 6 shows the combined growth and

damping rate of figures 4 and 5 for RA = 0.46. As
can be seen, the instability is completely suppressed.

Note that for a PML with a width of 10 mesh spac-

ings, waves with a wavenumber a smaller than _0
cannot be excited. This band of wavenumbers lies

within the two vertical dotted lines of figure 6.

(e) Other Methods

In addition to the above four types of meth-

ods, nonreflecting boundary conditions have also

been developed by a number of investigators us-

ing special methodology. This includes the works
of Giles 3°, Atkins & Casper m , Colonius 3_, Scott et

al.3z, Kroner 34 and Roe 35. Giles used a Fourier se-

ries approach. His work appears to have been moti-

vated by turbomachinery noise and flow considera-
tion.



(f) Evaluation of Radiation/Inflow and Out-
flow Boundary Conditions

During the last few years, there have been a

number of papers reporting the results of evalua-
tions of the performance and accuracy of a number

of proposed radiation and outflow boundary condi-
tions. Hixson et al. 36 employed a CAA problem

with known exact solution to evaluate the quasi-

one-dimensional characteristic boundary conditions

of Thompson 4'5, the Fourier series boundary con-
ditions of Giles and the asymptotic boundary con-

ditions of Tam & Webb 1° and Bayliss & Turkel 7's.

They reported that the Tam 8z Webb boundary con-

ditions gave satisfactory results whereas the Thomp-
son's boundary conditions produced significant re-

flections.

Hayden & Turkel a7 reported their experience

in using the boundary condition of a number of

investigators4,S,7,s,9,1°,aa, a4,as. However, the vari-

ous proposed boundary conditions were not imple-
mented in the computation in an identical man-

ner. A definitive comparison becomes impossible.

Dong as, in a study of radiation boundary conditions
for nonuniform mean flow, performed a direct com-

parison of the results using his method and those of
the Thompson's and Tam & Webb's boundary con-
ditions. The numerical results confirm the finding of

Hixson et al. a6' namely, the quasi-one-dimensional

characteristics boundary conditions can cause sig-

nificant reflections and inaccuracies.

It is also worthwhile to mention that two CAA

workshops on benchmark problems have been held
since 1994. Some of the benchmark problems

were designed to test radiation/inflow and outflow
boundary conditions. In each of the workshop

proceedings a9,4°, there is a section on comparisons

of computed results and exact (nearly exact) solu-

tions. They provide a measure of the quality of the

various numerical boundary conditions used.

2.2 Wall Boundary Conditions for High-
Order Schemes

In CAA, high order finite difference schemes are
used because they have less numerical dispersion.

However, a high order finite difference equation sup-

port spurious solutions that have no relationship to

the original partial differential equation. These spu-
rious solutions are unavoidably excited at a wall.

For aeroacoustics problems, the spurious waves are

of two types, propagating waves with short wave

lengths and spatially damped waves. Thus when

an acoustic wave pulse impinges on a wall, in ad-
dition to the reflected waves, spurious short waves

will also be emitted in a high order finite difference

solution. Furthermore, the spatially damped waves

would also be generated. But they decay as they

propagate away from the wall. Effectively they form

a numerical boundary layer on the wall surface.

There are two major difficulties in developing wall

boundary conditions for high order finite difference

schemes. First, high order finite difference equations

require additional boundary conditions, beyond the

physical boundary conditions of the original pro[_
lem, to define a unique solution. These additional

boundary conditions, or the way to handle the need

for these boundary conditions, must be found so that

only very small amplitude spurious waves are ex-

cited. Second, in the discretized system, each flow

variable at either an interior or boundary mesh point

is governed by an algebraic equation (discretized

form of the partial differential equation). The num-
ber of unknowns is exactly equal to the number of

equations. Thus there will be too many equations
and not enough unknowns if it is insisted that the

boundary conditions at the wall mesh point are sat-

isfied also. This is, perhaps, one of the major dif-
ferences between partial differential equations and

finite difference equations.

In the literature, there is an absence of suggestions

as how to impose wall boundary condition for high

order schemes except for the work of Tam _z Dong 41.

They proposed to use backward difference stencils as

a wall is approached. This eliminates the need for

extra boundary conditions. To provide enough un-
knowns to enforce the physical wall boundary con-

ditions as well as to allow the discretized govern-

ing equations to be satisfied at mesh points on the

wall, they suggested including ghost values at ghost
points. Ghost points are mesh points immediately

outside the computation domain. The number of

ghost values to be included is equal to the num-

ber of physical wall boundary conditions per en-

forcement point. Tam & Dong carried out an anal-

ysis of the problem of reflection of plane acoustic

waves by a plane wall using the ghost point method.

They found that the intensity of the reflected spuri-

ous short waves is largest for normal incidence but
is less than 0.4% of the amplitude of the incident
wave if a resolution of 10 mesh spacings per acoustic

wavelength is used. The thickness of the numerical

boundary layer (defined as the distance from the wall
at which the spurious damped numerical wave solu-

tion drops to 0.1% of the magnitude of the incident

wave) is a little over one mesh spacing. The ghost
point method has since been extended by Kurbatskii

Tam 42 for applications to curved wall surfaces us-



ing Cartesianmesh.Numericalresultsobtainedin
anumberof testcasesagreedwellwith exact solu-
tions.

For acoustic wave scattering problems, Chung

& Morris 43 proposed an Impedance Mismatched

Method (IMM). In this method, solid bodies are re-

placed by a new fluid medium with a large char-

acteristic impedance, pa. When the characteristic

impedance of the new fluid medium is infinite, it can
be shown that the incident waves are completely re-

flected. The advantage of the IMM method is that
the entire computation domain including the scat-

tering bodies can be regarded as a continuous fluid

region making the programming exceedingly simple.

However, unlike the ghost point method, the IMM

cannot be used for viscous problems.

2.3 Impedance Boundary Condition

One of the most successful methods for suppress-

ing fan noise radiating out the inlets of jet engines is
to install acoustic liners inside the front part of the

engine inlet as shown in figure 2. Mathematically, a
liner is represented by an impedance boundary con-

dition. The impedance, Z, is a complex quantity. If
the time dependence is taken to be e -i_t then Z is

related to the two real parameters of the liner R, the

resistance, and X, the reactance, by

Z=R-iX.

Ref. [44] provides a good introduction and many
references to the impedance of liners. In the past,

impedance boundary condition was analyzed in the

frequency domain. For time marching computa-
tion, an equivalent time-domain impedance bound-

ary condition is required.
Presently, two entirely different approaches for de-

veloping time-domain impedance boundary condi-

tion are available. Both approaches have limita-

tions. Ozyoruk & Long 45'46, following the works
of Sullivan 4r and Penny 4s in computational electro-

magnetics, employed the z-transform method in im-

plementing the impedance boundary conditions in
the time-domain. This method provides more flexi-

bility in fitting the frequency dependence of the re-
sistance and reactance of the liner to experimental
measurements. Tam & Auriault 49 used a differen-

tial formulation of time-domain impedance bound-

ary condition. Both methods are constrained by

spurious numerical instability. For treatment of

broadband noise problems, the formulation of Tam
& Auriault is restricted by numerical instability to a

3 parameter model. Further improvements on these
methods are obviously desirable.

2.4 Radiation and Outflow Boundary Condi-

tions with Incoming Acoustic and Vorticity
Waves

As depicted in figure 2, there are aeroacoustics

problems for which unsteady incoming acoustic or
vorticity waves are an important part of the prob-

lem. For this class of problems, the boundary condi-

tions must allow the incoming disturbances to prop-

agate in and the outgoing disturbances to leave the

computation domain smoothly. There are two ways
to treat these boundary requirements. We will refer

to them as the nonhomogeneous boundary condi-
tions method and the split variable method.

The nonhomogeneous boundary conditions ap-

proach recognizes that the computed variables are

the direct sum of the incoming and outgoing distur-

bances. Thus on using subscripts 'in' and 'out' to

denote the part of the flow variables associated with

the incoming and outgoing disturbances, the outgo-

ing disturbances can be expressed as the difference

between the computed variables and the prescribed

incoming disturbances; e.g.,

Pout : P -- Pin. (20)

Now at the inflow boundary, the outgoing acous-

tic waves satisfy the radiation boundary condition

(5). Therefore, by substitution of (20) and similar
expressions into (5), a set of nonhomogeneous radi-

ation boundary conditions is obtained,

P

F Pin 1

o o-
L Pin J

(21)

In (21) the nonhomogeneous terms on the right

side represent the known incoming waves. In Ref.

[42], the plane acoustic wave scattering problem was
calculated numerically using (21) as the boundary
conditions. It has been found that if the compu-

tation is to be carried out with low spatial resolu-

tion, then an improvement in the numerical accuracy
is obtained if the exact finite difference solution of

the incoming disturbances is used on the right side

of (21). At an outflow boundary, nonhomogeneous
outflow boundary conditions similar to (21) may be

derived from (6).



Another way to generate the incoming waves is
to divide the computation domain into an interior

and a boundary region. In the interior region, the

computed variables are the sum of the outgoing and

incoming disturbances. In the boundary region (3

mesh points for the 7-point DRP scheme), the gov-

erning equations are either the boundary conditions
derived from asymptotic solutions of Section 2.1(b)

or the absorbing boundary conditions of Section

2.1(c) or the PML equations of Section 2.1(d). The

computed variables are the outgoing disturbances

only. Whenever a derivative stencil extends to the

other region, the value of the variable required can
be obtained by using (20) and similar equations.

Here the inflow variables are given so either p or

Pout, whichever is appropriate can be easily found.

In this way, the incoming disturbances are generated

at the stencil overlapping part (overlapping with the

boundary region) of the interior region.

2.5 Radiation Boundary Conditions for
Ducted Environment

For the fan noise radiation problem illustrated in

figure 2, when the sound waves, generated by the

cutting of the ingested vorticity waves by the ro-
tor, reach the opening of the jet engine inlet, part of
them are reflected back. The reflected waves would

be propagating in the form of duct modes if the in-

ternal area of the engine inlet varies slowly. Unlike
acoustic waves in the free field, duct modes are dis-

persive. They are formed by the continuous reflec-
tion of sound waves by the walls of the duct. Their

propagation characteristics are very different from
acoustic waves in free space. As a result, not all the

radiation and outflow boundary conditions discussed

in Section 2.1 are applicable along boundary AB of

figure 2.

In the Second CAA Workshop on Benchmark

Problems 4°, several benchmark problems require the

use of radiation boundary conditions in a ducted en-

vironment for their solutions. For single frequency

time periodic problems, Tam et al. 5° developed a

set of such radiation boundary conditions using the
duct modes as the basis. Hu and Manthey 2s, on

the other hand, used the PML and variable splitting
method to form such radiatiofl boundary conditions.

It is necessary to point out that in a ducted environ-

ment, the dispersion relation of the PML equations
are not the same as those given in (8) and (9). They
are related to the duct modes. To ensure numeri-

cal stability, artificial selective damping is again re-

quired in the PML. The value of the artificial mesh
Reynolds number, RA, necessary to ensure stability

can be found in much the same way as in Section

2.1(d).

3. Boundary Conditions for Real Problems

The numerical boundary conditions discussed in

the above section are based largely on simplified

models. Real problems, however, are generally more

complex. In many of these problems, numerical

boundary conditions do not simply play a single

role such as letting the outgoing disturbances exit

smoothly with minimal reflections. They are to per-
form multiple tasks. In most problems that are of

technological significance, the mean flow is nonuni-

form. Further, because of computer memory con-
straint and run time limitation, the size of the com-

putation domain is usually smaller than ideal. The

small computer domain, forcing the boundary to be
closer to the source or objects in the flow, puts addi-

tional demand on the design of high quality numer-

ical boundary conditions. There does not appear

to have a systematic way of classifying numerical

boundary conditions for real problems. We will il-

lustrate, by specific examples, below how some of

the model boundary conditions can be modified and

extended for applications in practical CAA problems
of current interest.

3.1 Radiation Boundary Conditions for Sim-

ulating Jet Noise Generation

Let us return to the computation domain for sim-

ulating jet noise generation in figure 1. For practical

reasons, the size of the computation domain is typ-

ically 30 to 40 diameters in the axial direction and
20 to 30 diameters in the radial direction. These
dimensions are smaller than those of the anechoic

chambers in most physical experiments. Because of

the proximity of the computation boundary to the

jet flow, the boundary conditions along boundary
BCDE are burdened with multiple tasks. Obvi-

ously, the boundary conditions must be transparent
to the outgoing acoustic waves radiated from the jet.

In addition, the boundary conditions must impose
the ambient conditions on the numerical solution.

In other words, they specify the static conditions far

away from the jet. Furthermore, the jet entrains a

large volume of ambient fluid. The entrainment flow

velocity at the computation boundary is although

small yet not entirely negligible. For high quality nu-
merical simulation, the boundary conditions must,

therefore, allow the entrainment flow to enter the

computation domain smoothly as well.

In a recent work, Tam & Dong _1 considered the
need to formulate a set of radiation as well as out-



flow boundary conditions for situations where the

mean flow was nonuniform. They provided a gener-
alization of the asymptotic radiation boundary con-

ditions (5) and outflow boundary conditions (6). Let
p, u, v and _ be the weakly nonuniform mean flow

at the boundary of the computation domain, an ap-

propriate set of radiation boundary conditions, in 3

dimensions, was found to be,

v(o,r)&

P

-Jr sin0 + cos Ox + (r 2-F z2) ½

p

where (r, ¢, x) are the cylindrical coordinates, 0 is

the polar angle (in spherical coordinates) with the

x-axis as the polar axis. (u, v) are the velocity com-
ponents in the axial (x) and radial (r) directions.

V(O, r) = _ cos 0 + _ sin 0 + [_2 _ (_ cos 0 - _ sin 0)2] ½
and 5 is the speed of sound.

In their work on numerical simulation of the gener-
ation of axisymmetric screech tones from imperfectly

expanded supersonic jets (see Ref. [52] for a descrip-

tion of the jet screech phenomenon) Tam & Shen 58
considered a computation domain nearly identical

to that of figure 1. They used (22) as the basis
to develop the necessary radiation-entrainment flow

numerical boundary conditions. It was recognized

that the entrainment flow at the boundary of the

computation domain would be influenced by the jet

flow outside the computation domain. To develop an
asymptotic entrainment flow solution Tam & Shen

divided the jet into many evenly spaced segments

as shown in figure 7. The jet extended beyond the

computation domain to 60 diameters downstream.

The mass fluxes across the boundaries of each seg-
ment was found using empirical jet flow data. The
difference of the mass fluxes.at the two ends of each

segment of the jet gave the amount of entrainment

flow for the particular segment. This entrainment
was then simulated by a point source located at the

center of the segment. The asymptotic solution for

a point sink located on the x-axis at x, in a com-

pressible fluid is given by (a subscript 'e' is used to

indicate entrainment flow),

Q2Pe =l-
poo 32 2[( x _ x0)2+  212+...

u0 - x,)
a¢o - 4_r[(x-x0) _+r2]{ +""

(23)
V e Qr

= x,)2 + +""

p_ 1 Q2

pooaL -y +...

where poo, aoo and _, are the ambient gas density,
sound speed and the ratio of specific heats. Q, the

strength of the sink, has dimensions of pooaooD2; D

is the jet diameter. On replacing (_, 3,_, _) of (22)

by (p_,ue,ve,pe) of (23) and by summing over the
contributions from all the sinks, the desired radia-

tion entrainment flow boundary conditions are ob-
tained.

Figure 8 shows the entrainment flow streamline_

of a Mach 1.13 cold jet from a convergent nozzle ob-
tained by numerical simulation. It is worthwhile to

point out that along the right-hand boundary BC,
the mean flow actually flows out of the computation

domain, exactly as observed experimentally in the
case of a free jet. This streamline pattern would be

very different had the entrainment flow outside the

computation domain not been included in the sink

flow calculation. If a cut-off were imposed at the

right boundary of the computation domain, a recir-

culation flow pattern would emerge. This, however,
is inconsistent with experimental observation.

3.2 Outflow and Jet Axis Boundary Condi-

tions for Simulating Jet Noise Generation

Jets are inherently unstable. The instability

waves of jets play an important role in jet noise
generation 52. The instability waves, once excited at

the nozzle lip region, grow rapidly as they propagate
in the downstream direction. Since the jet spreads

out in the downstream direction, it follows that the

shear gradient and hence the instability growth rate
decreases farther and farther downstream. Eventu-

ally the wave would reach a location downstream

where it becomes damped. From this point on, the

wave amplitude decreases continuously all the way

to the outflow boundary. In the work of Tam &
Shen sz the outflow boundary was located at 30 jet

diameters downstream. At this distance, the ampli-

tudes of the decaying instability waves (sometimes



referred to as large turbulence structures when there

is less coherence) are not small. To account for the
weak nonlinearities of the outflow disturbances, it is

possible to nonlinearize the outflow boundary con-

ditions (6) by replacing the linearized terms by their
nonlinear counterpart. This yields (in cylindrical co-

ordinates),

0p 1 (0p 0,)+ = +

Ou Ou Ou 1 cOp (24)
o-i + u- z + v-ff;,- - p

Ov Ov Ov 1 COp

O---i+ + = - o Or

- P-_ -0
1 COp+cos00 _ +sin0___p r + (z2+r')½v(o)

where _ is the static pressure calculated by the en-

trainment flow model at the edge of the jet flow at

the outflow boundary. In their jet screech tones sim-

ulation work, Tam & Shen 5a reported that (24) pro-

vided very satisfactory numerical results. No reflec-

tion of any significance had been detected.

In cylindrical coordinates, the governing equations

have an apparent singularity at the jet axis (r --_ 0).

For instance, the continuity equation may be written

in the form,

COp copy Opu 1 copw pv
_+--gT+_-_ +;-N -+-=0"r (25)

To handle the apparent singularity, a jet axis bound-

ary condition may be derived by taking the formal

limit of (25) as r -+ 0. On noting that as r -+ 0,
v _ 0 while w _ 0 faster than r, the formal limit of

(25) is,

cOp 2cOpy cOpu
cO-i-+ Or + _ = O. (26)

(26), which has no apparent singularity at r = 0, is
to be enforced at all the mesh points along the jet
axis.

Experience indicates that the use of (26) at r = 0

inevitably leads to the generation of spurious short
waves at the x-axis in a time marching simulation.

The reason for this is simply that there is an abrupt

change in the governing equations between the jet

axis and the first row of mesh point off the axis.

Such discontinuous change always leads to the radia-

tion of short waves. For problems with axisymmetry,

one may use the half-mesh displacement method 5°

to avoid the discontinuity. The half mesh displace-

ment method does not involve a change in governing

equations. It depends on the extension of the com-

putation domain to the region r < 0 by symmetry

and antisymmetry arguments.

3.3 Numerical Simulation of Airframe Noise

Generation

During landing with the wing flaps of an aircraft
down, the unsteady flow over the airframe is an im-

portant source of noise. In a series of experimental
investigation, Kendall & Ahtye 54 identified a num-

ber of airframe noise sources; referred to as the flap

side-edge noise, gap noise and trailing edge noise.

One possible gap noise generation mechanism is un-

steady flow separation around the gap between the

wing and the flap. This possibility was investigated

using a 2-D numerical simulation by Thies, Tam _¢

Reddy sS. For simplicity, both the wing and flap

were approximated by fiat plates as shown in fig-
ure 9. This figure, from the numerical simulation,

shows large unsteady separation on the suction side

of the flap. In performing the numerical simulation,

a relatively small computation domain was used. At

a speed of Mach 0.15 and an angle of attack of 6

degrees, there is a steady loading on the wing-flap
combination. The steady loading produces a dis-

tortion on the mean flow that extends all the way

to the boundary of the computation domain. To

achieve a reasonably accurate simulation, the nu-
merical boundary conditions must not only allow the

unsteady disturbances to leave the computation do-
main but also account for the mean flow distortion.

Unlike the model problems of section 2 or the work

of Ref. [51], the difficulty here in formulating a set
of radiation boundary conditions is that the mean

flow is unknown a priori.

In order to take into consideration the change in

the mean flow at the boundary of the computation

domain due to the presence of the wing-flap com-

bination, one can first determine the forms of the

asymptotic solutions of both the mean flow and the
unsteady disturbances. This can be done by solving

the linearized Euler equations. On using the wing

chord L as the length scale, uoo (incoming velocity)
as the velocity scale, _ as the time scale, poo (the

Ue_

ambient gas density) as density scale and poou_ as

the pressure scale, the dimensionless linearized Euler

equations are,

cOp cOp.cOp (cOu cOy)

Ou Ou Ou COp (27)
_- + cos a_z + sin tr_yy = - cO----_-
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Ov Ov Ov Op
_- + cos a _z + sin a _--

ap Op . Op 1 (Ou Or)_- + cos ot_x +sm a _-:--+Oy--M--ff-_x_y + =0

where M is the Mach number and a is the angle of

attack. The time independent solution of (27) can

be found by introducing a velocity potential O(z, y)
defined by

00 80

u=-8-;, V=o---

(oop=- cosa_--z+sina , p= MZp.

Substitution of (28) into (27) gives,

(28)

Since only the leading term is kept in (30), (31) is
valid to order r -2 for large r. On the other hand, the

asymptotic radiation boundary conditions for acous-

tic waves in a uniform mean flow, from (5), is

;
P

A combined asymptotic boundary conditions in 2

dimensions that reduces to (32) for the time depen-

dent component and (31) for the time independent
component is,

/100 +0,+ ]
P

=0+0 (r- )133)

(COS ctO-_ + sin a 0_--_) 0

1 1020 020'_

(29)

(29) can be manipulated into the Laplace equa-

tion by introducing a rotation and dilation of coordi-

nates. The general solution of the Laplace equation

can be expressed in the form of a Fourier series in po-
lar coordinates. The lowest order nontrivial solution

for large r is in the form of a logarithmic function.
When rewritten in the Cartesian coordinates, it is

found,

(30)

On following the same reasoning, it is easy to de-

rive a corresponding set of outflow boundary con-
ditions suitable for use in a relatively small com-

putation domain where weakly nonuniform tw¢_-
dimensional mean flow is present. The equations

are,

__OP ap . Op
0t + cos a _z + sm a _vy

=M2(Op Op sin a____V)-_" + COSOt_-'_X+ Op

Ou Ou Ou __ Op (34)
0"-)-+ COSa OX + sin a Oy Ox

Ov Ov Ov Op

_- + cos ot_zz + sin a Oy - Oy

1 Op Op p

v (o---50-7+ N + -r= o.

where A is an unknown constant. In the gap noise

problem, A represents the as yet unknown loading

on the wing-flap combination.

It is straightforward to find by substituting (30)

into (28), after some algebra, the following asymp-
totic results.

+ : = O. (31)

P

Thies et al. 55 implemented (33) and (34) in their

numerical simulations of gap noise and obtained very
satisfactory results. Figure 10 shows the sound-

pressure-level (SPL) contours in dB from the numer-
ical simulation. The SPL contours below the wing

form nearly concentric circles centered at the gap

between the wing and the flap. This indicates that

the source of noise originates from the gap region

in agreement with the experimental observations of

Kendall & Ahtye 54.
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4. Concluding Remarks

During the last few years, a good deal of progress

has been made in the development of numerical

boundary conditions for CAA. Numerical examples

have shown that many of these boundary conditions,

when used in conjunction with high order finite dif-
ference schemes, are capable of providing high qual-

ity computational results. However, a closer scrutiny

reveals that the predominant fraction of these recent

works is devoted primarily to radiation and outflow
boundary conditions. Other equally important types

of boundary conditions such as wall boundary con-

ditions, impedance boundary conditions do not ap-

pear to have received enough attention. The need
for these other types of boundary conditions would

definitely be greater in the future. For they are cru-

cial to the application of CAA methods to fan noise,

duct acoustics, propeller and turbomachinery noise

problems.

In this paper, two very important items directly
related to numerical boundary conditions have not

been satisfactorily discussed. The first is the dis-

cretization and implementation of the numerical

boundary conditions. Needless to say, the discretiza-

tion process affects the accuracy and performance
of a proposed boundary condition in a differential

form. The implementation of the discretized bound-

ary condition in relation to the time marching high
order finite difference scheme used for the interior

points would also have a significant impact on the

overall accuracy and stability of the numerical solu-
tion. The second item is error estimate. From the

point of view of designing a computational algorithm
for the solution of a class of aeroacoustics problems,

a priori estimate is essential. Here order of magni-
tude estimate is not very helpful. The real need is a

quantitative error estimate. Most unfortunately, so

far, very little work has been done. It is hoped that

investigators interested in CAA would accept these

two items as their immediate challenges.
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Figure 3. Two dimensional computation domain with Perfectly
Matched Layers as boundaries

15



o

,_" [

,_._ ::.------_-

, . . , . • , • .

-3.0 -2.0 -! .0

--1. !

-o._j .1

0.0 1.0 2.0 3.0

Ct

Figure 6. Contours of combined growth and damping rates for
RA = 0.46

entrainment fl0w

sink on jet

Figure 7. Determination of the entrainment flow of a supersonic
jet by the point-sinks approximation
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Figure 9. Streaklines of flow around a wing-flap combination at
Mach 0.15 and 6 degrees angle of attack
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Figure I0. Sound-pressure-level contours obtained by numerical
simulation of the flow around a wing-flap combination at Mach
0.15 and 6 degrees angle of attack
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Figure 8. Computed streamlines of the entrainment flow around a
supersonic screeching jet at M = 1.13

16


